
Client and Gateway Event Scripts

Client and Gateway Event Scripts
The Client and Gateway Event scripting workspaces are located in the Project menu of the
Designer underneath Properties, or in the Project Browser under . Each of the Project > Scripts
two have their own set of events but there are several repeated events. Even with the Scopes
same names, different things may trigger the different Event Scripts.

Note: These scripts are stored inside a project, and will be copied if a project is copied.

Client Event Scripts

Client Event Scripts execute in the running Client, which means that they may never execute if no
clients are running, or they may execute many times if multiple clients are running. Client Event
Scripts will also execute in the Designer, but only in Preview Mode. Because Clients are full-
fledged applications, Client Event Scripts run on the computer running the Client, not on the
Gateway's host server computer. This means that they don't have access to the Gateway's file
system, and so on.

The Client Event
Scripts are:

Startup (client)
Shutdown
(client)
Shutdown-
Intercept (client)
Keystroke
Timer
Tag Change
Menubar
Message

On this page

...

Client and Gateway
Event Scripts

Client Event
Scripts
Gateway Event
Scripts

Startup Script
Gateway Startup
Behavior
Client Startup
Behavior

Shutdown Script
Gateway
Shutdown
Behavior
Client Shutdown
Behavior

Shutdown-Intercept
Script

Client Shutdown-
Intercept
Behavior (Not
Available in
Gateway Scripts)

Keystroke Scripts
Client Keystroke
Behavior (Not
Available in
Gateway Scripts)

Timer Scripts
Gateway Timer
Behavior
Client Timer
Behavior

Tag Change Scripts
Gateway Tag
Change Behavior
Client Tag
Change Behavior

Menubar Scripts
Client Menubar
Behavior (Not
Available in
Gateway Scripts)

Message Scripts
Client Message
Handlers
Gateway
Message
Handlers
Using Message
Handlers

Troubleshooting
Gateway and Client
Scripts

Gateway Scripts
Client Scripts

https://docs.inductiveautomation.com/display/DOC79/Scripting+in+Ignition#ScriptinginIgnition-Scoping

Gateway vs Client
Event Scripts

Watch the Video

Gateway Event Scripts

Gateway Event Scripts execute on the Ignition Gateway service. This means that they will always execute as long as Ignition is running, even
if there are no clients open. If there are multiple clients open, these scripts will still only run once. For example, if you have a script that writes
to the Gateway when a Tag changes, it belongs in the Gateway scope so you don't get duplicate records when multiple clients are open.

The Gateway Event Scripts are:

Startup (Gateway)
Shutdown (Gateway)
Timer
Tag Change
Message

https://inductiveuniversity.com/video/gateway-vs-client-event-scripts/7.9

1.

2.

Startup Script
The Startup Script event runs at the startup of either the Client or the Gateway. This allows you to
run a script at startup, giving you the chance to configure certain things dynamically.

Gateway Startup Behavior

In the Gateway scripting scope, this means that the script will run when the Gateway starts up and
whenever the scripting configuration changes via a Designer save action. This means that while
designing, the startup and shutdown events may happen frequently.

There is a specific order to when the various startup scripts are run. When troubleshooting your
Gateway startup times, consider the following:

Gateway starts - The Gateway will start as an OS service, and start the context. No
startup scripts can run before this is complete.
Projects are started - This includes all of the Gateway scoped items in the projects such
as Transaction Groups, SFCs, etc. This does not refer to launching clients, and no clients
can be automatically launched at this time. All are run at this Gateway Startup Scripts
time for each project. Note: if you copied a project, always check for Gateway scoped
events such as these. You generally don't want a Gateway Startup Script to run twice
because it is in two projects.

Client Startup Behavior

In the Client scripting scope, Client Event Startup scripts run after a user successfully logs in to the
client, but before any "Open on Startup" windows are opened. Client Event Scripts can be used to
open up a custom set of windows based on who logged in.

Startup Scripts

Watch the Video

Shutdown Script
The Shutdown Script event runs at the shutdown of either the Client or Gateway. It allows you to
run a piece of code as the shutdown is occurring. After the script is run, the shutdown will finish.

Note: if the computer power is lost abruptly (power outage, hard restart, etc) this shutdown script
will not run.

Gateway Shutdown Behavior

The Gateway Shutdown script will run as the Gateway shuts down, such as from the Gateway
Control Utility.

Client Shutdown Behavior

The Client Shutdown script will run as the Client shuts down or logs out, such as with a script, or
by clicking the close window "X" at the top of the OS window which is typical in most Operating
Systems.

Shutdown Scripts

Watch the Video

Shutdown-Intercept Script

System functions are available for both Client Event Scripts and Gateway Event Scripts. Some system functions are available for
both Client and Gateway Event Scripts, but some system functions are specific to either one or the other. When you're writing
event scripts, it's important to remember the scope of where you writing the script: Client or Gateway. You can check Scripting

 in the Appendix to see list of all system functions, their descriptions, and what scope they run in. Functions

https://inductiveuniversity.com/video/startup-scripts/7.9
https://inductiveuniversity.com/video/shutdown-scripts/7.9
https://docs.inductiveautomation.com/display/DOC79/Scripting+Functions
https://docs.inductiveautomation.com/display/DOC79/Scripting+Functions

Client Shutdown-Intercept Behavior (Not Available in Gateway Scripts)

The Shutdown-Intercept Script is unique in that it runs when a user attempts to shutdown a client, but before actual shutdown occurs. This
means it will actually run before the Shutdown Script, and there is only a client version of it. There is a special event object that you can set a
cancel property to prevent shutdown by using the code "event.cancel = 1." Doing this will cancel the shutdown event and leave the user at
the spot they were last. This allows you to set special restrictions when the client is actually allowed to shut down, such as having a certain
role, as seen in the example below:

Python - Cancel Application Exit

Check to see if the user has a certain role.
if "SuperUser" not in system.security.getRoles():
 # If the role is not present, it will warn the user and cancel the shutdown process.
 system.gui.warningBox("Exit not allowed for non-admin user.")
 event.cancel = 1

Keystroke Scripts

Client Keystroke Behavior (Not Available in Gateway
Scripts)

The Keystroke Scripts let you create different events that will activate on certain key combinations.
They only run in the Client, but you may add as many Keystroke Script events as you'd like, as
long as each one has a unique key combination.

Since multiple Keystroke Scripts can be added, there are separate buttons that allow you to add (

) a Keystroke Script, or edit () and delete () the currently selected Keystroke Script.

When choosing a keystroke, you may choose any number of modifiers, which are keys or
mouse buttons that must be down to activate the keystroke. You can also choose whether or not
the keystroke is on the pressed or released event of a keyboard key, or upon the typing of a
character. Special keys like the Function keys (F1) or ESC key are only available in the pressed
and released actions. The example below shows the F9 key when pressed, closes the window
called "Main Window."

Keystroke Scripts

Watch the Video

Timer Scripts

Some Operating Systems reserve certain keys for certain function, and will capture the
key press or release before it gets sent to the Client. For example, many Operating
Systems use the TAB key to shift focus to the next field.

https://inductiveuniversity.com/video/keystroke-scripts/7.9

The Timer Scripts execute periodically on a timer at a fixed delay or rate. This allows you to set up
a sort of heartbeat that can run in the Client or the Gateway Scope. Since multiple Timer Scripts

can be added, there are separate buttons that allow you to add () a Timer Script, or edit ()

and delete () the currently selected Timer Script. The Timer Script has three major settings:
Delay in milliseconds, Delay Type, and Threading.

A timer script (the default) waits for the given between each script invocation. Fixed Delay Delay
This means that the script's rate will actually be the delay plus the amount of time it takes to
execute the script. This is the safest option since it prevents a script from mistakenly running
continuously because it takes longer to execute the script than the delay.

Fixed Rate scripts attempt to run the script at a fixed rate relative to the first execution. If the
script takes too long, or there is too much background process, this may not be possible. See
the documentation for for more details.java.util.Timer.scheduleAtFixedRate()

In addition, all timer scripts for a given project that choose to run in a thread will all Shared
execute in the same thread. This is usually desirable, to prevent creating lots of unnecessary
threads. However, if your script takes a long time to run, it will block other timer tasks on the
shared thread. In this case, you can have the Timer Script run in a thread so that it runs Dedicated
independently. The rule of thumb here is that quick-running tasks should run in the shared thread,
and long-running tasks should get their own dedicated thread.

Gateway Timer Behavior

This script will execute in the Gateway, meaning that it will begin running when the Gateway starts,
and will continue running at the rate specified until the Gateway is stopped.

Client Timer Behavior

Since this will execute in a Client, it is important to remember that Client Timer Scripts may never
execute (if no clients are open) or may execute many times (once per open client). They start
when the client has a successful login.

Timer Scripts

Watch the Video

Tag Change Scripts
The Tag Change Script event occurs when either the Value, Quality, or Timestamp of a Tag or list
of Tags changes. They will also get an initial execution whenever the scripting system starts up.
You can set the Tag Change Script to run in either the Client or the Gateway Scope. Multiple Tag

Change Scripts can be created, using the add () button to add a script, and the remove ()
button to remove the selected script. To specify multiple Tags for a given script, enter them one

per line in the Tag paths text area. To quickly add many Tags, you can open the Tag Browser ()
and drag-and-drop Tags from the window onto this text area. The actual script is then entered in a
different tab. When executing, each Tag Change Script runs in a separate thread. This prevents
long running scripts from blocking the execution of other Tag Change Script.

These scripts receive three special variables in their namespace when they are run: , event initialC
, and . Both the event and newValue objects refer to the Tag that changed to hange newValue

initiate the event.

Tag Change Scripts

Watch the Video

initialChange - a variable that is a flag (0 or 1) which indicates whether or not the event is due to the initial subscription or not. This
is useful as you can filter out the event that is the initial subscription, preventing a script from running when the values haven't
actually changed.

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Timer.html#scheduleAtFixedRate(java.util.TimerTask, long, long)
https://inductiveuniversity.com/video/timer-scripts/7.9
https://inductiveuniversity.com/video/tag-change-scripts/7.9

event - a object which contains the properties: tag, tagPath, and tagProperty, all of which are also complex TagChangeEvent
objects.

event.tag - a object which contains basic information about the Tag such as name, value, and type that can be Tag
accessed via .event.getTag().getName()
event.tagPath - a object which contains information pertaining to the Tag path such as the parent and child paths TagPath
via . You can also get the path of the Tag by calling .event.getTagPath().getParentPath() event.getTagPath().toString()
event.tagProperty - a object, which can be used to create an enum of a property, which can be used in TagProperty
conjunction with the Tag object to access properties of the Tag such as OPC Item Path or Scale mode via event.getTag().

. getAttribute(event.getTagProperty().getProp("OPCItemPath"))
The possible property names are listed here: Tag Properties

newValue - a object which contains a value, quality, and a timestamp of the Tag. They can be called via newValue newValue.
.getValue()

Gateway Tag Change Behavior

Having the Tag Change Scripts run in the Gateway Scope means that the scripts will trigger when a Tag in their Tag list changes as long as
the Gateway is running. The script will be able to interact with the Gateway and other Tags, but not the project.

Client Tag Change Behavior

Having the Tag Change Scripts run in the Client Scope means that the scripts will trigger when a Tag in their Tag list changes, but only if a
Client of that project is open. This means that if no Clients are open, the script will not fire, and if many clients are open, the script will fire
once for each open client. Additionally, because this is run from the Client Scope, it will have access to Client resources such as Client Tags
and can trigger things in the Client such as opening a window.

Menubar Scripts

Client Menubar Behavior (Not Available in Gateway
Scripts)

The Client Menubar Scripts create and control the options available in the menubar of the Client.
As such, these scripts are only available in the Client Scope. By default, a Client will have three
menus: Command, Windows, and Help. The Windows and Help Menu are separate, and
controlled through the project properties, but the Command menu is actually created in the Client
Menubar Scripts. The default menu structure gives you an idea of how to create a menu.

Menu Bar

Watch the Video

The top level nodes will show up in the menubar. Each node can have an action script unless it has children. In the image above, the
Command object will have a grayed out action script field because it has three children. This allows the Client to click into the menu, and look
at what is inside. Children of objects can themselves have children, allowing you to create submenus within your menu. The structure is easy

to create, using the buttons to the right to add peer () or child () nodes. You can also move the nodes up () or down () in the

hierarchy, as that will affect the order they appear in the Client. You can also delete () nodes that you don't want.

With a node selected you can add to or edit its behavior. Each node can be given a name that it will display in the Client, an icon which will
be displayed at the front of the name, and a tooltip that will display when hovering over the menu option. These help to identify what the node
is and what it does.

https://docs.inductiveautomation.com/display/DOC79/Tag+Properties
https://inductiveuniversity.com/video/menubar/7.9

Accelerators and Mnemonics

Each node can also be given an accelerator and a mnemonic character. The accelerator is a key or key combination that can be pressed at
any time in the client to initiate that nodes event. It will display next to the name of the node in the client, and works much like many
commonly known accelerators such as Control + S to Save. The mnemonic character is a key that can be pressed when currently in the
menu to initiate the node event. If the character chosen is in the name of the node, then that character will be underlined.

Finally, you can set an action script on the node which will determine what happens when the node is selected. Typically this is used for
navigation, such as swapping to a new window, or logging out and exiting, like the default nodes. However, you can enter in any kind of script
you want.

Message Scripts
Message Handlers allow you to write a script that will run in either the Client or Gateway that they
are located in, but they can be invoked by making a call from other projects or even other
Gateways. They can be called using three different scripting functions: , system.util.sendMessage s

, and .ystem.util.sendRequest system.util.sendRequestAsync

Client Message Handlers

Located in the Message section of Client Event Scripts, client message handlers will execute in the
client. This means if you have five clients open for a project with a message handler that gets
called, the message handler will run in each client. You can easily create and manage all of your
client message handlers in the Client Event Scripts window. Clicking on one of your message
handlers will bring up its script on the right.

Script Messaging

Watch the Video

Under the list of handlers, three small buttons allow you to add, remove and manage your handlers.

 - Will add a message handler.Add Message Handler

 - Will delete the highlighted message handler.Remove Message Handler

 - Will modify the settings for the highlighted message handler.Modify Message Handler

When adding or modifying a message handler, a small settings window will popup. In it, you can give your message handler a name or
modify its existing name, enable or disable the message handler, and even select how it executes under the dropdown. There are Threading
three different options that dictate how the message handler will execute:

Shared - The default way of running a message handler. Will execute the handler on a shared pool of threads, in the order that they
are invoked. If too many message handlers are called all at once and they take long periods of time to execute, there may be delays
before each message handler gets to execute.

https://docs.inductiveautomation.com/display/DOC79/system.util.sendMessage
https://docs.inductiveautomation.com/display/DOC79/system.util.sendRequest
https://docs.inductiveautomation.com/display/DOC79/system.util.sendRequest
https://docs.inductiveautomation.com/display/DOC79/system.util.sendRequestAsync
https://inductiveuniversity.com/video/script-messaging/7.9

Dedicated - The message handler will run on its own dedicated thread. This is useful when a message handler will take a long time
to execute, so that it does not hinder the execution of other message handlers.
EDT - This will run the message handler on the Event Dispatch Thread (EDT) which also updates the GUI. If a message handler
were to take a long time to execute, it would block the GUI from running which may lock up your client. This is helpful when your
message handler will be interacting with the GUI in some way, as the GUI will not be able to update until the message handler
finishes.

Inside the message handler is your script. The script will have a single object available to it, the . The payload is a dictionary payload
containing the objects that were passed into it. Each object in the payload dictionary can be accessed by calling their corresponding key. For
example:

Pseudocode - Payload Values

value1 = payload["MyFirstValue"] #"MyFirstValue" is the key that is associated with a value. We are
taking the value associated with MyFirstValue, and assigning it to value1.
value2 = payload["MySecondValue"] #Similarly, we are taking the value associated with MySecondValue and
assigning it to value2.

Gateway Message Handlers

Gateway Message Handlers are setup and function similarly to client message handlers. However, there are two major differences:

They are setup in the Message section of the Gateway Event Scripts. As such, they are executed on the Gateway.

This feature is new in Ignition version 7.9.4
 to check out the other new featuresClick here

They have an added layer of security. In the Message Handler Settings, it is possible to configure Security Zone/User Role pairs.
The user invoking the message handler must match one of the combinations of Security Zone/User Role listed or else the message
handler will not execute.

https://docs.inductiveautomation.com/display/DOC79/New+in+this+Version#NewinthisVersion-Newin7.9.4

Using Message Handlers

Once you have your message handlers created, you can then call them from a script using one of three scripting functions: system.util.
, , and . These functions allow you to call a message handler in any sendMessage system.util.sendRequest system.util.sendRequestAsync

project, even if the project that the message handler resides on is different from the one you are calling it from. The message handler will
then execute in the scope in which it was created, and will use any parameters that you pass in through the payload.

Pseudocode - Calling a Message Handler

project="test"
messageHandler="My Message Handler"
myDict = {'MyFirstValue': "Hello", 'MySecondValue': "World"}
results=system.util.sendMessage(project, messageHandler, myDict)

Troubleshooting Gateway and Client Scripts
For both Gateway and Client scripts, Ignition gives you the tools to quickly check the status, troubleshoot, and diagnose problems with your
scripts.

Gateway Scripts

The Gateway has a special section () where you can quickly check to make sure Gateway webpage - Status > Systems > Gateway Scripts
your Gateway scripts are running properly. If any of your scripts have an error, you can find the details of the error to help you troubleshoot
what went wrong. You can also find a list of logged errors for all Gateway Event Scripts under Log Activity. To learn more about statusing
Gateway scripts and troublshooting, refer to .Gateway Scripts

Client Scripts

The Console is very a important tool in Ignition for troubleshooting Client scripts. You can check to see if your script is working directly from
the Client window, or the Designer while in Preview Mode. Any client scripting errors along with printouts go to the Console. The Console will
identify the script name, error message, what line the script error is in, and a description of the problem.

https://docs.inductiveautomation.com/display/DOC79/system.util.sendMessage
https://docs.inductiveautomation.com/display/DOC79/system.util.sendMessage
https://docs.inductiveautomation.com/display/DOC79/system.util.sendRequest
https://docs.inductiveautomation.com/display/DOC79/system.util.sendRequestAsync
https://docs.inductiveautomation.com/display/DOC79/Systems#Systems-GatewayScripts

To access the Console from a Client, go to the menubar and select . To access the Console from Preview Help > Diagnostics > Console
Mode in the Designer, go to the menubar . Tools > Console

Related Topics ...

Project and Shared Scripts
Tag Event Scripts

https://docs.inductiveautomation.com/display/DOC79/Project+and+Shared+Scripts
https://docs.inductiveautomation.com/display/DOC79/Tag+Event+Scripts

	Client and Gateway Event Scripts

